ChaLearn Looking at People Challenge 2014: Dataset and Results
نویسندگان
چکیده
This paper summarizes the ChaLearn Looking at People 2014 challenge data and the results obtained by the participants. The competition was split into three independent tracks: human pose recovery from RGB data, action and interaction recognition from RGB data sequences, and multi-modal gesture recognition from RGB-Depth sequences. For all the tracks, the goal was to perform user-independent recognition in sequences of continuous images using the overlapping Jaccard index as the evaluation measure. In this edition of the ChaLearn challenge, two large novel data sets were made publicly available and the Microsoft Codalab platform were used to manage the competition. Outstanding results were achieved in the three challenge tracks, with accuracy results of 0.20, 0.50, and 0.85 for pose recovery, action/interaction recognition, and multi-modal gesture recognition, respectively.
منابع مشابه
Action Detection with Improved Dense Trajectories and Sliding Window
In this paper we describe an action/interaction detection system based on improved dense trajectories [20], multiple visual descriptors and bag-of-features representation. Given that the actions/interactions are not mutual exclusive, we train a binary classifier for every predefined action/interaction. We rely on a non-overlapped temporal sliding window to enable the temporal localization. We h...
متن کاملGesture Recognition Using Template Based Random Forest Classifiers
This paper presents a framework for spotting and recognizing continuous human gestures. Skeleton based features are extracted from normalized human body coordinates to represent gestures. These features are then used to construct spatio-temporal template based Random Decision Forest models. Finally, predictions from different models are fused at score level to improve overall recognition perfor...
متن کاملFirst impression based personality analysis
In the past few years human behavior has became a topic of high interest in computer vision field. Many researchers are still focusing on the problem of how to teach computers to identify people by face, detect their gestures, facial expressions or recognize their emotions. Personality automatic analysis was less observed until the recent, even as it could find applications in many different ar...
متن کاملNonparametric Gesture Labeling from Multi-modal Data
We present a new gesture recognition method using multimodal data. Our approach solves a labeling problem, which means that gesture categories and their temporal ranges are determined at the same time. For that purpose, a generative probabilistic model is formalized and it is constructed by nonparametrically estimating multi-modal densities from a training dataset. In addition to the convention...
متن کاملChaLearn Looking at People: Events and Resources
This paper reviews the historic of ChaLearn Looking at People (LAP) events. We started in 2011 (with the release of the first Kinect device) to run challenges related to human action/activity and gesture recognition. Since then we have regularly organized events in a series of competitions covering all aspects of visual analysis of humans. So far we have organized more than 10 international cha...
متن کامل